[研究] RLS, Recursive Least Square
通常用在Filter Desing, Adaptive Filter Design
不過剛好我同學問到這個,他只看到別人用在馬達決定參數
簡單的來說,整個系統有
desire y_d
System y(n)= sigma[w(k)x(n-k)]
x,y 都可以量測,設計w(k)的filter parameter將y,y_d的Square Error減小
Wiki上的圖比較清楚
http://en.wikipedia.org/wiki/Recursive_least_squares_filter
設計wn,讓d^(n)=sigma[w(k)x(n-k)]儘量接近d(n) [此處d(n)及前面提到的輸出y(n)]
當然,馬達當中會有實際的馬達,以及演算中的Model Motor
實際的馬達輸出會是d(n),而演算中作系統識別Model輸出會是d^(n)
而x則是 id,iq,vd,vq的四個state,都是可以量測得到‧
所以可以反過來把filter當作馬達參數,而如何取得正確的馬達參數,minimize模擬
系統的輸出‧就可以用到RLS
WIKI上也有提到:
The benefit of the RLS algorithm is that there is no need to invert matrices,
thereby saving computational power. Another advantage is that it provides
intuition behind such results as the Kalman filter.
因為RLS相對於Kalman Filter而言,少了y=Cx+Dv這條某些state可能量不到的問題
因此KF是量不到的,就用其他的部分資訊與精細的Model來猜
而RLS則是要把係數調整到與Desire Output相同‧
http://www.cs.tut.fi/~tabus/course/ASP/LectureNew10.pdf
該門ASP的課程
http://www.cs.tut.fi/~tabus/course/ASP/Lectures_ASP.html
--
▄▅▆▆▆ ▆▆▆▆▆ ▆▆▆▅▄▃ Nissan GT-R
█ ▅▅▅ █ █▄▄▄▄█ The Legend is REAL.
█ █ █ ██ █ █▇▅▄ Nurburgring North: 7:38
◥▆▆▆█ █ █ ▅▃ http://www.plurk.com/TonyATTA/invite
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.20.20
※ 編輯: tonyatta 來自: 140.112.20.20 (04/30 10:12)
推
05/04 18:50, , 1F
05/04 18:50, 1F
→
05/04 22:22, , 2F
05/04 22:22, 2F
→
05/05 00:23, , 3F
05/05 00:23, 3F
→
05/10 19:58, , 4F
05/10 19:58, 4F
→
05/10 19:58, , 5F
05/10 19:58, 5F
→
05/10 19:59, , 6F
05/10 19:59, 6F
→
05/10 20:13, , 7F
05/10 20:13, 7F
→
05/10 20:14, , 8F
05/10 20:14, 8F
→
05/10 20:15, , 9F
05/10 20:15, 9F
→
05/10 20:18, , 10F
05/10 20:18, 10F
→
05/10 20:18, , 11F
05/10 20:18, 11F
→
05/10 20:18, , 12F
05/10 20:18, 12F
→
05/10 20:19, , 13F
05/10 20:19, 13F
→
05/10 20:20, , 14F
05/10 20:20, 14F
→
05/10 20:22, , 15F
05/10 20:22, 15F
→
05/10 20:22, , 16F
05/10 20:22, 16F
→
05/10 20:24, , 17F
05/10 20:24, 17F
→
05/10 20:24, , 18F
05/10 20:24, 18F